

Concept Design of Modular NDDCT Solutions for the CSG Industry

Research Team: Hugh Russell, Kamel Hooman, Zhiqiang Guan, Yuanshen Lu

Opportunity

How can Natural Draft Dry Cooling Tower (NDDCT) technology best deliver value in the context of the CSG industry?

<u>Premise 1</u>) activities related to process gas cooling are currently a significant cost in CSG production – NDDCTs can reduce Operating Expenses (OPEX)

<u>Premise 2</u>) Future technology developments in the CSG production chain will increase the reliance on equipment powered by grid power – **NDDCTs can eliminate the need for electric fans and the exposure to electricity prices**

<u>Premise 3)</u> Fan noise from cooling systems restricts plant deployment in some situations – **NDDCTs are** silent and can improve deployment flexibility

<u>Premise 4)</u> Reduced power consumption for cooling will make power available for other uses — **for sites** with limited power, the elimination of fans can make power available for for other uses

Methodology

- 1) Identify technology applications
- 2) Concept Design implement NDDCT design workflow to create a viable concept, including assessment of crosswind performance
- 3) Numerical modelling
- 4) Techno-economic Analysis capital cost estimation, estimation of savings², Discounted Payback Period^{1,2}

Applications

Application 01 – Low-pressure cooler (46 kWt)

Application 02 - High-pressure compressor station cooler (single stream, 4.6 Mwt)

Application 03 - High-pressure compressor station cooler (multiple streams, 3 MWt)

Concept Design

- rectangular footprint with flat / V-arrangement of heat exchangers simplifies transport and layout
- stacks made from **lightweight**, **flexible membrane material** as demonstrated at UQ Gatton Campus
- porous crosswind barriers limit formation of deleterious vortices in strong crosswinds

Fig 2) Three 1.5 MWt Modules

Fig 3) Deployment of 1.5 MWt Module

action O1 concept is actimat

• Application 01 concept is estimated to have a discounted payback period in excess of 10 years^{1,2}, based on the cost savings due to elimination of fans (\$9,600 annually per site)

Results

School of Mechanical and Mining Engineering, UQ

- Application 02 concept is estimated to have a discounted payback period of **8.3 years**^{1,2}, based on the **cost savings due to elimination of fans** (\$195,000 annually per site)
- Application 02 concept presents an opportunity for the elimination of 32 hours of annual maintenance³ related to fans
- All module types are shown to be **resistant to crosswind effects** when barriers are used

Fig 4) Natural Draft Dry Cooling Tower (NDDCT) Test Facility, UQ Gatton

¹Capital costs estimation based on quotes for one-off supply of major components. It is likely that capital cost would reduce with volume, improving payback period.

²Cost savings due to reduced maintenance are not included in DPP calculations, but represent a further opportunity for OPEX savings.

³Information provided by Arrow Energy.