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INTRODUCTION METHODOLOGY
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PT Pressure transducer TT Temperature fransducer
PI Pressure indicator PR Pressure regulator

RV Relief valve BV Ball valve

PU Pump GB Gas bottle

MPR manual pressure regulator FM Flow meter
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Sample and strain gauge arrangement Flow diagram of Triaxial stress permeameter test rig

Permeability of Coal seam gas reservoir
To relate coal’s permeability (k) to cleat width

(b), effective stress (o) and mechanical strain (e). mmmc _Iu_um

k = \A@v b= \Qwo ,O, Am,v Gas flow direction (top to bottom)
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Gas flow in a cubic coal sample |
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Density, pore volume and porosity of samples by He pycnometer and Mercury porosimetry
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Permeability prediction

40 mm cubic coal sample  Micro-CT scanning of sample showing pores >56 micron Tabulated results based on model
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