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Palynology of the Jurassic—Cretaceous transition, Surat Basin
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Fast and Efficient Machine Learning

How do we apply machine learning? What are the desirable properties?  What is the pay off? Example — Identifying the sources of uncertainty.
* A surrogate model is built to approximate a  Accurate predictions using small sets of training * Statistical information and uncertainty Sobol’ Indices are used to rank the impact of the porosity and
computationally expensive model. and validation data. propagation: mean, variance and higher permeability of the various coal bodies (see figure top left).
* It emulates the behaviour of the original * Fast evaluations across the entire parameter moments, and cumulative distribution B TG ST AN SRS,
model, honouring the underlying physics. space. functions. orl- |
* |t accurately and efficiently performs: * Respects the statistical distributions of * Sensitivity analysis — identifying key inputs and S
* uncertainty propagation; and uncertain input parameters. parameter variance.
e sensitivity analysis. e Direct access to sensitivity analysis. * History matching through fast and i i
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How do you construct a PCE surrogate model? Example — Using a surrogate to predict How do we optimise the construction process?
A PCE represents the model as a sum of carefully chosen polynomials each cumulative gas production. e Construct surrogate models using moments or approximations
individually weighted to give an accurate approximation. of the moments for the inputs, thus allowing for unknown
Number of Relative Median distributions.
The mean Capturing how the model varies coefficients RMSE APE  Use regression techniques for approximating key coefficients,

1 x 103 x101%
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thus reducing the required number of training points.

| | .‘ [ T 38 13967 5.9249 45627 3.6436 * Two types of regression techniques to solve the same
(x) =co* Cq1 ° | Cy * | C3 | 175 11634 49325 3.8976  3.2392 minimum argument equation; Ordinary Least Squares (OLS)
o o I 300  0.8599 3.6569 2.8667  2.3450 and Least Angle Regression (LARS).
 The method naturally generalises to multiple input parameters. .

LARS is preferred for higher dimensionality cases as it

* The polynomials are orthogonal with respect to the input parameters’ statistical 105 Cubic, 600 triaining points preferences the ‘most important’ coefficients and hence can

distributions: . generate a higher order surrogate model.

* reducing the complexity; pas| _ _

e capturing the uncertainty in the input parameters; ) ol Future directions.

* allowing for efficient identification of key parameters and key % %m 1. Exploring the relationship between the size of the training set,

parameter interactions. 3 3 25 the number of input parameters and the accuracy of the
2.25 surrogate model.
How does it honour the geophysics? 221 2. Machine learning from field data, cutting out the middleman,
* The weights c;, ¢4, C, ... are derived from the underlying data (often via evaluations of 1 22 23 24 25 26 2910 22 2a 24 25 26 i.e. no requirement for an established model.
Parent %108 aren %108

the original model).
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