
Example –
Cumulative Distribution Functions:
A CMG model for peak gas extraction, 
empirical CDFs plots (3000 evaluations) 
from the original model (taking days)  
and from a PCE surrogate (taking 
seconds). 

Surrogate models via Polynomial Chaos Expansions 
What is a surrogate model?
• A surrogate model approximates a computationally expensive model.
• Following the behaviour of the original model and honouring the underlying physics.
• Accurately and efficiently performing:

• uncertainty propagation; 
• sensitivity analysis; 
• parameter finding. 

Why Polynomial Chaos Expansion (PCE)?
• Surrogate models constructed by summing combinations of 

polynomials. 
• Polynomial functions are fast to evaluate.
• Resulting response surfaces predict model output with low error. 
• Choosing orthogonal polynomials reduces the complexity and allows for 

propagation of uncertainty in the input parameters.

Future directions. 
1. The size of the training set increases with the 

number of input parameters. The use of adaptive 
strategies and other advances in quadrature 
techniques will be explored to minimise this.

2. Constructing PCEs from field data, cutting out the 
middleman, i.e. no requirement for an established 
model. 

3. Hybrid approaches combining 1 and 2.
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What makes a good surrogate?
• Honours the underlying physics of the geological model.
• Uses a small set of training and validation data.
• Fast evaluations across the entire parameter space. 
• Enables key parameter identification (sensitivity analysis).
• Respects the statistical distributions of uncertain input 

parameters.

How do you construct a PCE surrogate model?
• A PCE represents the model as a sum of carefully chosen polynomials each 

individually weighted to give an accurate approximation.

ℳ(𝑥) = 𝑐0 + c1 + c2 + c3 + ⋯

• The method naturally generalises to multiple input parameters.
• The polynomials are orthogonal with respect to the input parameters’ statistical 

distributions:
• reducing the complexity;
• capturing the uncertainty in the input parameters;
• allowing for efficient identification  of key parameters and key 

parameter interactions.

The mean Capturing how the model varies

How does it honour the geophysics?
• The weights 𝑐0, 𝑐1, 𝑐2, … are derived from the underlying data  (often via evaluations of 

the original model). 

What is the pay off?
Statistical information and uncertainty propagation:
• Immediately provides the mean, variance and higher moments.
• Rapidly generates cumulative distribution functions for the model 

outputs.

Sensitivity Analysis – identifying key parameters:
• Orthogonality allows for rapid analysis of the propagation of input 

parameter variance.
• Resulting Sobol’ Indices enable identification of key parameters and 

key parameter interactions.

Parameter finding:
• As a PCE is fast to evaluate it enables comprehensive exploration of 

the response surface to conduct inverse parameter finding.

Example – Identifying Key Parameters:
A CMG model to predict gas extraction with uncertain input 
parameters: fracture permeability 𝑘𝑥, fracture porosity 𝜙, Langmuir 
Volume 𝑉𝐿 and Langmuir Pressure 𝑃𝐿.
Plots of slices of the response surface for cumulative gas extraction:

These slices suggest certain sensitivity relationships.
A PCE easily provides a formal sensitivity analysis through the 
construction of Sobol’ Indices, without further sampling the parameter 
space.

Example – A Polynomial Chaos Expansion:
A response surface for a model with a uniformly distributed 
uncertain input parameter on [−1,1]:

The incremental PCE approximation for the response surface:

Example – PCE validation: 
The first six 1D polynomials for 4 input parameters 
can be combined to construct a 5D response surface 
for a CMG model for peak gas extraction in which the 
mean absolute percentage error across the entire 
surface is 0.33 %. 


