
Figure 6 Orientation of SHmax, coal fracture, interburden fracture in
the different structural domains (see Figure 1).

Figure 2 Stratigraphic and tectonic history of the Bowen and Surat Basin
from Sliwa et al, 2008
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INTRODUCTION

Understanding the structural controls on the present day in-situ stress and fracture
distribution is fundamental to recognize the permeability distribution within coal seam
gas reservoirs. The Jurassic Walloon subgroup coal measures experienced subtle
deformation associated with folds, faults; especially in the eastern part.

Significant variation of in-situ stress orientation and magnitude also observed within the
Surat Basin. This has been attributed to either localised stress perturbations surrounding
basement faults and associated stratigraphic juxtaposition, or to regional lithological
variations and proximity to weaker but thicker sediments in the trough (Brooke – Barnett
et al., 2015).

AIMS OF THE STUDY

The major aims of this study are

To examines the present day in-situ stress variations as well as fracture orientations and
density within Walloon Subgroup in different structural domains (Figure 1) .

Map the in situ stress variation, fracture intensity and density near and away from major
basement structures (MGFS, LBFS), folds (Undulla Nose, Kogan Anticline) associated with
the deeper basement structures which will be used to build an index of fracture density
and intensity proximal to structures.

Figure 1 Map showing specific structural areas / domains [Mimosa syncline (1A),
West of Leichhardt – Burunga Fault System (1B), Undulla Nose (2), Kogan
anticline and SE of Moonie – Goondiwindi Fault system (3) ]within study area,
Eastern part of Surat Basin. Walloon subcrop Proterozoic depth to basement
SEEBASE is an underlay; (Oz SEEBASE, 2005).

CONCEPTUAL MODEL
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BOREHOLE IMAGE LOG ANALYSIS & PRELIMINARY RESULTS

Figure 3 Conceptual Model

Figure 4  Map showing Mean Stress Orientations (SHmax) from the interpreted wells 

Figure 5 Map showing fracture density distribution (P10) from the interpreted wells 

OBSERVATIONS

 Mean Maximum Principle Stress (SHmax) shows a ENE-WSW

orientation but in-situ stress orientation varies spatially and along

depth close major structures and faults.

 Fracture Density (P10) within Walloon Sub-group is significantly higher

close to major basement and Surat structures.

 Coal fractures are dominantly oriented in NW-SE direction in Mimosa

Syncline, LBFS, Kogan anticline and SE of MGFS. However, there is also a

NE-SW to ENE – WSW coal fracture orientation observed. Coal fractures

in the Undulla Nose area are dominantly WNW – ESE with a very small

component oriented towards ENE-WSW.

 Interburden fractures in the Mimosa Syncline, LBFS, Undulla Nose area

dominantly oriented in two orientations (WNW – ESE and ENE –WSW).

There are two minor fracture orientations (NE-SW & NW-SE) present in

the Mimosa syncline and Undulla Nose area. Interburden fractures are

quite variable in the Kogan anticline and SE of MGFS area.

 Fractures within coal in most cases contained with the coal seam, didn’t

penetrate adjacent interburden.

Figure 9 Seismic section showing in situ stress and fracture variation in the SE of Moonie - Goondiwindi
Fault System

Figure 7 Seismic section showing in situ stress and fracture variation in the Leichhardt – Burunga Fault System

Figure 8 Seismic section showing in-situ stress and fracture variation
in the Undulla Nose
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In the conceptual model the following assumptions made:

 Fractures will be parallel to axial plane at the crest and will be conjugate at the limb of
the folded surface.

 The upper part of the anticline will have extensional structures (normal faults, radial
extension veins etc.) and below neutral surface compressional features (folds, thrusts
etc.)

 Fracture density will be higher near major faults with multiple orientations bur the
fracture density will decrease away from the faulted area.


