CHEMICAL OXIDANT STIMULATION OF COAL SEAMS TO INCREASE COAL SEAM PERMEABILITY

Candidate: Zhenhua Jing (PhD)*
Supervisors: Dr Karen Steel
Prof Jim Underschultz
* Centre for Coal Seam Gas, The University of Queensland

Research Question:
Can the permeability of a coal seam be enhanced by using an in-situ oxidant treatment?

Objectives:
- Investigate effects of various oxidizing chemicals on the coal permeability;
- Develop a fundamental understanding of the oxidizing mechanisms;
- Rank the different chemical treatments and identify those offering the most promise for particular coals.

Possible effects of oxidants:

1. Coal cleat surface could be etched, leading to an increase in cleat aperture. Expectation: Increase in permeability.
2. The oxidant molecules could penetrate into the coal structure and swell the coal internally, leading to a decrease in cleat aperture. Expectation: Decrease in permeability.
3. Coal breakage could occur, possibly preceded by coal swelling. Expectation: Increase or decrease in permeability.

Methodology: Swell/shrink test
- Identify coal particle size change
- Visualize coal oxidation process

Results:

- NaClO
 - Pre-treatment
 - Post-treatment
 - Projection area
 - Swell/shrink ratio: 1.2

- KMnO₄
 - Source: Bowen Basin NC2
 - Rank: 1.08
 - KMnO₄ Concentration: Breaking

Conclusion:
1. NaClO and KMnO₄ react with the Bandanna coal, causing swelling and breakage.
2. Increasing oxidant concentration causes increased swelling.

This research is supported by funding from the UQ Centre for Coal Seam Gas, including industry partners APLNG, Arrow Energy, QGC and Santos.