

Using drones to measure fugitive methane emissions

Dr.-Ing. Sebastian Hörning – The University of Queensland, Centre for Natural Gas

What are fugitive methane emissions?

In the fossil fuel sector, fugitive emissions are broadly defined as any emissions unrelated to the end use of fuel (IPCC, 2006)

- Leaks from processing facilities and pipelines
- Defective valves or seals
- Migration of gas to the surface
- Emissions from abandoned wells

modified from www.industry.nsw.gov.au/water/science/groundwater/

Methane

- Methane (CH_4) has a global warming potential (GWP) **28 times** ٠ greater than CO₂ over a 100-year period
- GWP **84 times greater** than CO₂ over a 20-year period ٠
- Methane is the second biggest contributor to Australia's ٠ greenhouse gas emissions

=

Methane emissions in Australia

Methane emissions in Australia (2019, tonnes CO_2e)

Methane

- Methane (CH_4) has a global warming potential (GWP) **28 times** ٠ greater than CO₂ over a 100-year period
- GWP 84 times greater than CO₂ over a 20-year period ٠
- Methane is the second biggest contributor to Australia's ۲ greenhouse gas emissions
- Global commitment to reduce emissions ۲
- Net-zero state government commitments •

Australia signs up to global methane pledge

cut global methane emissions by 30 per cent on 2020 levels by 2030. The move will put further pressure on the Coalition and its energy and

climate policies after Labor committed to increasing Australia's emissions reduction target to 43 per cent by the end of the decade.

The Albanese government has pledged to join other developed countries such as the United States, the United Kingdom and the European Union to

Source: Australian Financial Review

A 2050 zero net emissions target for Queensland

Zero 'net' emissions means that carbon pollution may still be produced in one part of the economy (e.g. some industrial processes) and count towards our pollution profile. However, the Queensland Government will be looking to find ways to offset that pollution in another part of the economy, such as increasing carbon storage in the landscape.

Queensland joins Victoria, New South Wales, South Australia, Tasmania and the Australian Capital Territory in setting a zero net emissions by 2050 target.

Source: Queensland Climate Transition Strategy

Fugitive methane emissions

Source: Country Caller Regional News

Source: www.federatedenvironmental.com

Source: Country Caller Regional News

Social implications

Negative impacts on the gas industry's social license to operate

Source: www.lockthegate.org.au

Source: www.lockthegate.org.au

Quantification is key

GHG Accounting and Reporting Principles

RELEVANCE	Ensure the GHG inventory appropriately reflects the GHG emissions
COMPLETENESS	Account for and report on all GHG emission sources and activities within the chosen inventory boundary.
CONSISTENCY	Use consistent methodologies to allow for meaningful comparisons of emissions over time.
TRANSPARENCY	Address all relevant issues in a factual and coherent manner, based on a clear audit trail. Disclose any relevant assumptions and make appropriate references to the accounting and calculation methodologies and data sources used.
ACCURACY	Ensure that the quantification of GHG emissions is systematically neither over nor under actual emissions, as far as can be judged, and that uncertainties are reduced as far as practicable. Achieve sufficient accuracy to enable users to make decisions with reasonable assurance as to the integrity of the reported information.

United Nations Framework Convention on Climate Change (UNFCCC)

- Support the "global response to the threat of climate change"
- Bind "member states to act in the interest of human safety even in the face of scientific uncertainty"
- Ultimate objective "to stabilize GHG concentrations in the atmosphere at a level that will prevent human interference with the climate system"

Annex 1 parties to the United Nations Framework Convention on Climate Change (UNFCCC)

13 of the world's top 20 gas producing nations are not included in Annex 1 of the UNFCCC

Last updated on 25 October 2022 2010 Afghanistan	Albania	📑 Algeria	Nation	Date of last UNFCCC emissions submission		Saint Kitts and Nevis	Saint Lucia	Saint Vincent and the Grenadines Sao Tome and Principe Serbia
• Argentina	Armenia	Azerbaijan	China	2014		Seychelles	Sierra Leone	Singapore
Bahamas	Bahrain	Bangladesh	United Arab Emirates	2014		Solomon Islands	★ Somalia	South Africa
₩ Barbados	🔗 Belize	Benin	Saudi Arabia	2012	1	South Sudan	Sri Lanka	State of Palestine
Bhutan Botswana	Bolivia (Plurinational State of)	Bosnia and Her.	Uzbekistan	2012	ublic	Sudan	Suriname	Syrian Arab Republic
Burkina Faso	Burundi	Cabo Verde			-	🙃 Tajikistan	Thailand	Timor-Leste
Cambodia	Cameroon	Central African	Argentina	2012	4	Сарана Сово	Tonga	Trinidad and Tobago
Chad	Chile	China	Malaysia	2011		O Tunisia	Turkmenistan	苯 <mark>,</mark> , Tuvalu
Colombia	Comoros	Congo	Turkmenistan	2010	1	Uganda	United Arab Emirates	United Republic of Tanzania
Cook Islands	Costa Rica	Côte d'Ivoire	Qatar	2007	1	Uruguay	Uzbekistan	Vanuatu Yemen
Suba	Democratic People's Republic of Korea	🗾 Democratic Reț			-	Zambia	Zimbabwe	remen
Djibouti	Dominica	Dominican Rep	Iran	2000	4		Zimbabwe	
Ecuador	Egypt	El Salvador	Indonesia	2000				
Equatorial Guinea	D Eritrea	👞 Eswatini	Algeria	2000				
Ethiopia	🊟 🔋 Fiji	Gabon	Nigeria	2000				
Gambia Grenada	Georgia Guatemala	Ghana Guinea	Trinidad and Tobago	1990				

Source: The Australian Natural Gas Industry: Monitoring, reporting, and reducing methane emissions (AGIT)

- Emissions inventory developed for regulatory purposes is typically based on "bottom-up" estimates
- Identifying each emission source and estimating their emissions
- Commonly based on emissions factors and activities from a from a representative sample of sources

- Small, regional, or global scale
- Remote sensing based
 observations
- Emissions estimates through
 inverse modelling

Bottom-up emissions estimation

- To support consistency in reporting under the UNFCCC, the IPCC established requirements for how the inventories are prepared and the format of the reports
- Defines the global warming potential of GHG
- Provides methodologies to estimate sources and sinks, and emission factors used to link the emission of a greenhouse gas for a particular source to the amount of activity causing the emission.

Bottom-up emissions estimation

2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories

Where:

Edistribution	= Total amount of GHG gas emitted due to all relevant natural gas distribution activities
\mathbf{A}_{gas} distribution	= Volume of natural gas consumed or length of distribution pipeline
EF gas distribution	= Emission factor for gas distribution
$A_{surface \ storage}$	= Volume of natural gas stored (in surface storage) or consumed
EF _{surface} storage	= Emission factor for surface storage
$A_{distribution}$ of town gas	= Length of town gas distribution pipeline
EF distribution of town ga	s = Emission factor for town gas distribution

Homes & Businesses

Source: www.minnesotaenergyresources.com

Bottom-up emissions estimation

National Greenhouse and Energy Reporting Act 2007 (NGER)

3.73LB Method 2-onshore natural gas production, other than emissions that

Item	Equipment type (k)	Emission factor		
		CH ₄	CO ₂	Units
1	Onshore gas gathering and boosting pipelines (cast iron)	7.72×10^{-3}	3.14 × 10 ⁻⁵	tonnes CO ₂ -e /kilometres of pipeline hour
2	Onshore gas gathering and boosting pipelines (plastic)	6.99 × 10 ⁻⁴	2.85 × 10 ⁻⁶	tonnes CO ₂ -e /kilometres of pipeline hour
3	Onshore gas gathering and boosting pipelines (protected steel)	1.31×10^{-4}	5.34×10^{-7}	tonnes CO ₂ -e /kilometres of pipeline hour
4	Onshore gas gathering and boosting pipelines (unprotected steel)	4.64 × 10 ⁻³	$1.89 imes 10^{-5}$	tonnes CO ₂ -e /kilometres of pipeline hour

Section 3.73LA

 SD_{ij} is the default share of gas type (*j*) in the unprocessed gas (*i*), for methane SD is 0.788 and for carbon dioxide SD is 0.02.

Source: www.ghgsat.com/en/

- Global coverage
- Coarse resolution (TROPOMI 5km x 3.5km, GHGSat 25m x 25m)

Source: https://pergamusa.com/

- Regional scale coverage (< 1000km²)
- Medium resolution (< 10m x 10m)

Source: www.terrasanaconsultants.com

Source: The APPEA Journal 57(2) 561-566

https://doi.org/10.1071/AJ16098

- Local scale coverage (< 5km²)
- High resolution (< 1m x 1m)

Spatial coverage and resolution

Source: www.ghgsat.com/en/

•

Source: https://pergamusa.com/

Source: www.terrasanaconsultants.com

Source: *The APPEA Journal* 57(2) 561-566 https://doi.org/10.1071/AJ16098

- TROPOMI: 25000 kg/hr
 - GHGSat-D: 1000-3000 kg/hr
 - GHGSat-CX: 100-200 kg/hr

10-20 kg/hr

< 0.1 kg/hr

Detection limit (self reported)

Source: https://climateadaptationplatform.com/climatechange-monitoring-using-tropomi/

Assumption: CH₄ 50 MJ/kg

50 MJ/kg * 25000 kg/hr = 1250000 MJ/hr = 1250 GJ/hr

1250 GJ/hr * 24 hr/d = 30000 GJ/d = 30 TJ/d

30 TJ/d * 365 d/a = 10950 TJ/a = 10.95 PJ/a

TROPOMI: 25000 kg/hr

Australian natural gas flows (PJ) 2018/19

Source: The Australian Natural Gas Industry: Monitoring, reporting, and reducing methane emissions (AGIT)

Source: www.ghgsat.com/en/

Assumption: CH₄ 50 MJ/kg

50 MJ/kg * 150 kg/hr = 7500 MJ/hr = 7.5 GJ/hr

7.5 GJ/hr * 24 hr/d = 180 GJ/d = 0.18 TJ/d

0.18 TJ/d * 365 d/a = 65.7 TJ/a = 0.066 PJ/a

Assumption*: ~ 9000 producing CSG wells

1400 PJ/a / 9000 wells = 0.15 PJ/a/well

GHGSat-CX: 100-200 kg/hr

Australian natural gas flows (PJ) 2018/19

Source: The Australian Natural Gas Industry: Monitoring, reporting, and reducing methane emissions (AGIT)

Top-down approaches **do not measure the actual emissions** (flow rates)

CH₄ concentrations in ppm

Source: www.terrasanaconsultants.com

Source: www.ghgsat.com

Measuring methane concentrations through laser absorption spectroscopy

Concentration

- Snapshot in space and time
- ppm, ppb, g/L

- Rate of mass flow
- L/min, kg/s, t/yr

Flux

Tarantola (2005): 'The inverse problem consists of using the actual result of some measurement to infer the value of the parameter that characterize the system'

PHILOSOPHICAL TRANSACTIONS A

royalsocietypublishing.org/journal/rsta

Check for

Cite this article: Neininger BG, Kelly BFJ, Hacker JM, LU X, Schwietzke S. 2021 Coal seam gas industry methane emissions in the Surat Basin, Australia: comparing airborne measurements with inventories. *Phil. Trans. R. Soc. A* **379**: 20200458. https://doi.org/10.1098/rsta.2020.0458 Coal seam gas industry methane emissions in the Surat Basin, Australia: comparing airborne measurements with inventories

Bruno G. Neininger^{1,+}, Bryce F. J. Kelly^{2,+}, Jorg M. Hacker^{3,4}, Xinyi LU² and Stefan Schwietzke^{5,+}

¹MetAir AG, Airfield LSZN, Switzerland ²School of Biological. Earth and Environmental Sciences. UNSW

"...indicates that CSG sources emit about 0.4% of the produced gas, which is **two to three times** greater than existing inventories for the region..." Atmos. Chem. Phys., 20, 15487–15511, 2020 https://doi.org/10.5194/acp-20-15487-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Quantifying methane emissions from Queensland's coal seam gas producing Surat Basin using inventory data and a regional Bayesian inversion

Ashok K. Luhar¹, David M. Etheridge¹, Zoë M. Loh¹, Julie Noonan¹, Darren Spencer¹, Lisa Smith², and Cindy Ong³

¹CSIRO Oceans and Atmosphere, Aspendale, 3195, Victoria, Australia
 ²Katestone Environmental Pty. Ltd., Milton, 4064, Queensland, Australia
 ³CSIRO Energy, Kensington, 6152, Western Australia, Australia

"...covering the CSG development areas, the inferred emissions are **33% larger than those from inventory**."

46 plumes resolved, georeferenced by UQ-CNG

Coal seam gas industry methane emissions in the Surat Basin, Australia: comparing airborne measurements with inventories

Bruno G. Neininger^{1,+}, Bryce F. J. Kelly^{2,+}, Jorg M. Hacker^{3,4}, Xinyi LU² and Stefan Schwietzke^{5,+}

Possible sources?

17

16

3

3

2

- 'mega' plume (#16, mainly ag. but maybe coalesced)
- feedlots (most of the active ones)
- gas "facilities" (small proportion, mainly comp. stns)
- coal mines
- towns
- water body
- piggeries

Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge. *Elementa Science of the Anthropocene, 7: 37. 2019*

- 10 teams, drone-, vehicle-, plane-, helicopter-based
- Mobile Monitoring Challenge:
 - \Box 1 hidden CH₄ source per pad
 - □ Random pad allocation
 - □ Teams to measure and estimate, report back

Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge. *Elementa Science of the Anthropocene, 7: 37. 2019*

Source: www.ghgsatcom/en/

Source: https://pergamusa.com/

$R^2 \approx 0.8$ (super-emitters)

Source: www.terrasanaconsultants.com

Source: *The APPEA Journal* 57(2) 561-566 https://doi.org/10.1071/AJ16098

R² < 0.2

Single-blind inter-comparison of methane detection technologies – results from the Stanford/EDF Mobile Monitoring Challenge. *Elementa Science of the Anthropocene*, 7: 37. 2019

No data available!

Sherwin, ED, et al. 2021. Single-blind test of airplane-based hyperspectral methane detection via controlled releases. Elem Sci Anth, 9: 1. DOI: https://doi.org/10.1525/elementa.2021.00063

Flux estimation accuracy

UQ-CNG AQIRF

Novel statistical estimation of fugitive methane emissions using drones

Source: www.terrasanaconsultants.com

Source: www.terrasanaconsultants.com


```
Santos
arrow
```

UQ-CNG AQIRF

Novel statistical estimation of fugitive methane emissions using drones

- Test and improve inversion algorithms
- Perform a UQ-CNG controlled release experiment
 - Validate algorithms
 - Trial and optimize data acquisition strategies (e.g., flight pattern, flight height)
 - Increase data density of external factors (e.g., wind information from drone)

Source: www.terrasanaconsultants.com


```
Santos
arrow
```


Acknowledgments

The author gratefully acknowledges support of the Queensland Government through the Advance Queensland Industry Research Fellowship Scheme and industry (Arrow Energy, APLNG, Santos, and Terra Sana Consultants) through The University of Queensland Centre for Natural Gas (<u>natural-gas.centre.uq.edu.au</u>).

Thank you!

Dr.-Ing. Sebastian Hörning

Research Fellow, Centre for Natural Gas s.hoerning@uq.edu.au +61 451 145 367

CRICOS 00025B